Summer Educational Enrichment in Math, 2024 **Math Contest - Solutions**

1. Platonic Solids: Name the 5 Platonic Solids and say how many faces they have. (Spelling does not matter.)

Name Tetrahedron Faces 4

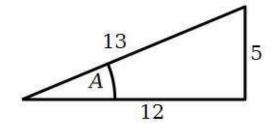
Name Hexahedron or Cube Faces 6

Name Octahedron Faces 8

Name Dodecahedron Faces 12

Name Icosahedron Faces 20

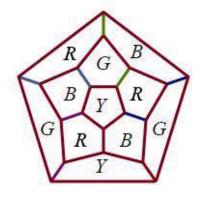
2. **Trig Functions:**


For the right triangle at the right, identify the trig functions for the angle A.

$$\sin A = \underline{\qquad} \cos A = \underline{\qquad}$$

Solution:

$$\sin A = \frac{Opp}{Hyp} = \frac{5}{13}$$
 $\cos A = \frac{Adj}{Hyp} = \frac{12}{13}$



Map Coloring: The map at the right has 11 countries. 3.

Color it with as few colors as possible.

Countries with a common edge must have different colors. Use the abbreviations:

B=blue *Y*=yellow *P*=purple R=red *G*=green Explain why you cannot do it with fewer colors.

Solution: It can be done with 4 colors. This is a posible solution.

It can't be done with 3 colors because the central yellow country is surrounded by 5 countries which can start alternating between 2 colors, blue and red, but this cannot go all the way around because 5 is odd. So there must be a 4th color, green.

4. **Euler numbers**: Consider the octahexahedron made from 6 squares and 8 triangles:

The number of faces is: F = 14

The number of vertices is: V = 12 Explain below.

The number of edges is: E = 24 Explain below.

Explain V: **Solution**: The 6 squares have 4 vertices and the 8 triangles have 3 vertices for a total of $6 \times 4 + 8 \times 3 = 48$ vertices, counting each vertex for each face, but each vertex belongs to 4 faces. So we divide to get 48/4 = 12 vertices.

Explain E: **Solution**: The 6 squares have 4 edges and the 8 triangles have 3 edges for a total of $6 \times 4 + 8 \times 3 = 48$ edges, counting each edge for each face, but each edge belongs to 2 faces. So we divide to get 48/2 = 24 edges.

Calculate the Euler number: **Solution**: F + V - E = 14 + 12 - 24 = 2

Explain how you know the Euler number before counting *F*, *V* and *E*?

Solution: There are no holes.

5. Balderdice:

a. If there are 24 dice remaining at the table, how many total dice at the table would you expect to be 5s and 1s?

Solution: In 24 random dice you would expect 4 of each of the 6 numbers. So 4 of 5s and 4 of 1s. So a total of 8.

b. If there are 24 dice remaining at the table and you managed to roll a 5 or 1 on all 3 of your own dice, how many total dice at the table would you expect to be 5s and 1s?

Solution: You have 3 dice. Of the 21 remaining dice you would expect $\frac{1}{3}$ of them to be 5s and 1s, or 7. With your 3, that's a total of 10.

6. **Matrices**: Compute the following matrix product:

$$\left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right) \left(\begin{array}{c} 3 \\ 2 \end{array}\right) = \left(\begin{array}{c} \underline{} \\ \underline{} \end{array}\right)$$

Solution:
$$\begin{pmatrix} 2 & 4 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \cdot 3 + 4 \cdot 2 \\ 5 \cdot 3 + 3 \cdot 2 \end{pmatrix} = \begin{pmatrix} \underline{14} \\ \underline{21} \end{pmatrix}$$

7. Birthday Problem:

a. What is the probability that Polly and Jason have different birthdays (assuming neither was born in a leap year)?

Solution:
$$1 \cdot \frac{364}{365} = \frac{364}{365}$$

b. If 5 people are in a room, what is the probability that at least 2 of them have birthdays in the same month?

Solution: The probability they all have birthdays in different months.is

$$p = \frac{11}{12} \times \frac{10}{12} \times \frac{9}{12} \times \frac{8}{12} = \frac{11}{12} \times \frac{5}{6} \times \frac{3}{4} \times \frac{2}{3} = \frac{55}{144}$$

So the probability they are not all different is $1-p=1-\frac{55}{144}=\frac{89}{144}$.

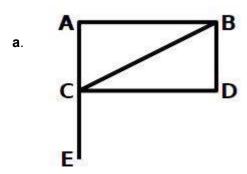
8. **Strings**: You hold 4 strings in your hand. You tie off 2 pairs at the top and 2 pairs at the bottom. When you let go, what is the probability that the strings are all in one loop?

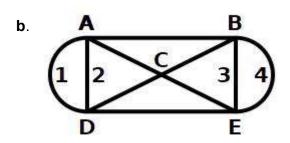
Solution: The top pairings don't matter. When you connect 1 bottom string to 1 of the 3 others, 2 will allow for a single loop. So the probability is $\frac{2}{3}$. The remaining 2 strings are then tied. So the overall probability is $\frac{2}{3}$.

9. Infinities: TRUE OR FALSE? There are more natural numbers than there are even numbers.

b. Explain your answer.

Solution: There is a one-to -one correspondence between the natural numbers and the even numbers. Each natural number is paired with its double.


So these sets have the same cardinality, \aleph_0 .


10. **Hilbert Hotel**: You run the Hilbert Hotel, which has an infinite number of rooms and is full. 2024 guests want rooms for a Math Convention. Explain how you rearrange everyone to accommodate the guests by stating which room the person in room *N* needs to move to.

Solution: $N \rightarrow N + 2024$

11. **Rational Tangles**: You have two ropes which were tangled using Twists (T) and Rotations (R). The tangle is assigned the rational number $\frac{-4}{3}$. Write down the list of Twists and Rotations which will untangle the ropes and the rational number assigned to each intermediate step. (There may be more blanks than you need.)

12. **Euler Paths**: For each graph below determine whether the graph is traversable (in other words, determine whether you can trace each edge of it exactly once without lifting a pencil). If it is not traversable, give a reason for your answer. If it traversable, show an Euler path $(Start \neq Finish)$ or an Euler circuit (Start = Finish) using arrows and numbers along edges.

One solution is **ECABDCB**

but it must start and end at B and E.

One solution is

AB4ED1A2DCB3ECA

13. Cryptography:

a. Decode the following message which was encoded using a shift cipher:

IZIVC WUYEVI MW E VIGXERKPI.

Solution:

EVERY SQUARE IS A RECTANGLE.

b. Decode the following message, which has 45 letters:

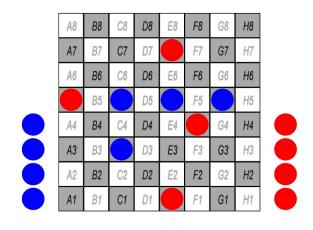
IESOH DGANE ORNOM NEDTS OEHLA TNAIM LEMKI IGIEA KGDTM

Solution: (stack them and read down):

I DO NOT LIKE GREEN EGGS AND HAM. I DO NOT LIKE THEM, SAM-I-AM.

14. **Pop-Tac-Toe**: It is Blue's turn.

Can Blue win on this turn?


Circle one:

Yes

No

If so, which square should Blue play on? If there is more than one answer, just list one winning play.

Solution: Play B6

15. **Kenken**: Solve the Kenken:

1-	2-		10×	
	9+	9+		
4		2-		
6+		2÷		10+
	2÷			

Solution:

1- 3	2- 4	2	10× 1	5
2	9+ 3	9+ 5	4	1
⁴ 4	1	²⁻	5	2
6+ 1	5	2÷ 4	2	10+ 3
5	²÷ 2	1	3	4

16. Solve the cryptogram:

DKCZW VM UDT KIT, DKCZW VM CGHD,

SKJDH K SKI ODKZVOW, FDKZVOW KIT FGHD.

- UDIXKSGI QCKIJZGI

HINT: $D \rightarrow E$

EARLY TO BED, AND EARLY TO RISE, MAKES A MAN HEALTHY, WEALTHY AND WISE. – BENJAMIN FRANKLIN